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Abstract 

Thermal tomography is assumed to be a technique which allows sorting out hidden defects by their depths. In this 
paper, some novel approaches to the classification of defects by depths and material layers are discussed, namely no-
reference dynamic tomography, defect characterization, neural networks and non-linear fitting. 

1. Introduction 

In this study, we use the definition of tomography borrowed from Internet (from Greek τομη — layer, or section) 
where tomography is regarded as a nondestructive technique (NDT) for layer-by-layer profiling of solids structure.   

A bunch of tomographic techniques which implement analysis of temperature is being explored by several research 
teams worldwide (see Table 1).  

 
Table 1. Thermal (infrared) tomography techniques 

Technique Description Reference 
Thermal-wave slice 
diffraction tomography 

A particular implementation of the photothermal method (identification of 
thermal diffusivity distribution). 

[1] 

IR emission tomography of 
flames 

The basic principle is identical to the ‘classical’ computer (X ray) tomography. 
Temperature distributions in gases and plasma are captured from few angles 
of view by using an IR imager. 

[2] 

Microwave tomography of 
human bodies 

The technique uses semi-transparency of biological tissues to microwave 
radiation of wavelengths in a centimeter range. 

[3,4] 

IR tomography of excess 
charge carriers (in silicon) 

The method was elaborated for the evaluation of life time and diffusion 
length of charge carriers in silicon samples by size up to 1 m. It is based on 
probing a tested object with crossed laser beams. A pumping laser (1.17-1.18 
µm wavelength) injects electrons and holes, and a probing laser (3.39 µm) 
analyses spatial/temporal evolution of excess charge carriers. The accuracy 
of determining spatial coordinates is ~ 1 cm.  

[5] 

Acoustic thermo-tomography 
of biological objects 

This passive technique enables the profiling of temperature through a human 
body. The identification procedure is based on solving the corresponding 
inverse (ill-posed) problem. 

[6] 

Stereoscopic two-sided 
tomography 

A sample is heated with two sources and the temperature is monitored on the 
rear surface. Defect depth is determined by a simple geometrical equation. 

[7] 

Dynamic thermal 
tomography 

In a one-sided thermal NDT (TNDT) procedure, deeper defects produce 
surface temperature signals at longer times. ‘Timegrams’ can be converted 
into ‘tomograms’, or ‘depthgrams’ 

[8] 

Thermal tomography based 
on the analysis of heat 
transfer function 

Sample internal structure is identified by evaluating the heat transfer function. [9] 

Thermal tomography based 
on non-linear numerical 
fitting 

Least-square multi-parametric fitting allows the evaluation of several 
parameters in a particular pixel, including defect depth and size. Producing a 
full-frame image requires too much of computer time. 

[10, 11] 

Defect characterization 
approach 

Some inversion formulas have been proposed to evaluate defect depth 
(‘depthgrams’) and thickness (‘thicknessgrams’). The slicing of depthgrams 
produces tomograms. 

[12] 

 
This paper contains the recent results obtained at Tomsk Polytechnic University in the development of some novel 

approaches to DTT which allow slicing a solid body by analyzing the spatial/temporal evolution of transient surface 
temperature distributions in one-sided TNDT. 
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2.  'Classical' dynamic thermal tomography 

This technique proposed in the 1980s is based on the idea to substitute a long image sequence with the pair of 
images called maxigram and timegram; a reference point is to be introduced to specify a ‘non-defect’ behavior of a sample 
under test [8]. A maxigram represents a specific IR thermogram where each pixel reveals its maximum differential signal 

mT∆  in regard to a reference point. In its turn, a timegram is the result of non-linear image treatment which exhibits times mτ  

when mT∆  signals appear. Timegrams can be ‘sliced’ for thermal tomograms proving to be more user-friendly than trivial IR 
images.  

The efficiency of such ‘classical’ algorithm can be illustrated on a 10-ply CFRP sample which ‘traditionally’ contained 
25 Teflon inserts by various size located at depths from 0.2 to 1 mm (sample: courtesy W.Świderski), see figure 1.  The 
experimental sequence was obtained by using a computerized IR thermographic system at University Laval, Canada. This 
sequence seemed to be quite good for the comparison of several data processing algorithms, such as Fourier transform 
(Pulse Phase Thermography), Principal Component Analysis  etc.; these results were reported elsewhere [13]. 

 
 

 
Fig. 1. CFRP 10-ply 2 mm-thick reference sample (25 Teflon inserts)  

 
In order to correctly apply the algorithm of thermal tomography, a reference point was chosen close to the defect A 

shown in figure 2a. The corresponding maxigram and timegram are shown in figure 2b,c. Respectively, in this case the 
minimal detected defect 10x10 mm was located at the depth of 1 mm.  

Thermal tomograms are shown in figures 2d-h. The layers identified have been calibrated by using the CFRP 
diffusivity value of 0.8.10-7 m2/s. The obtained tomographic estimates are in a rather good accordance with true values.  

The tomograms in figures 2d-f can be regarded ‘classical’ because they exhibit only real defects located in the 
selected layers. Oppositely, the tomogram in figure 2h (the deepest layer at the 1 mm depth), along with defect footprints, 
contains some artifacts caused by defects in other layers (strictly speaking, there is also the artifact in figure 2g). The nature 
of artifacts was discussed in [12]. In shallow layers, artifacts can be effectively subdued by trivial amplitude filtration, as 
shown in figures 1d-f. However, in deeper layers, artifacts can be inseparable from real defects because both are of low 
amplitudes. In some cases, better results can be obtained by using no-reference tomography (see below). 

3. No-reference tomography 

In DTT, uneven heating makes results strongly dependent on where a reference point is chosen. As a matter of fact, 
only ‘flat’ non-defect areas allow thermal tomograms of a good quality across large areas. In order to overcome the necessity 
of introducing a reference point, the idea of no-reference DTT was proposed. The main concept is to model the temperature 
evolution in non-defect areas by using, for example, theoretical heat conduction solutions [14] or polynomials [12]. In the 
latter case, it is assumed that non-defect temperatures can be described by polynomials of a lower order, while subsurface 
defects cause significant signals in high-order polynomial members. 
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a) b) c) 

   
d) e)  f) 

 

 

 
g) h) 

Fig. 2. Tomographic analysis of a CFRP sample from figure 1: 
  

a – optimum source image (defect A: SNR=1.0), 
b – maxigram, 
c – timegram, 
d – thermal tomogram, layer 0.24-0.31 mm, 
e – thermal tomogram, layer 0.42-0.54 mm, 
f – thermal tomogram, layer 0.60-0.66 mm, 
g – thermal tomogram, layer 0.67-0.69 mm, 
h – thermal tomogram, layer 0.71-0.83 mm 

        
Let us assume that evolutions of both ‘defect’ and ‘non-defect’ temperatures can be fitted with polynomials of the mth 

and nth order respectively, where m<n. Differential signals may be defined as ( ) ( )n m
ij f ij f ij fT T T∆ = − , where the 

superscripts specify a degree of a polynomial, and the subscript “f” means fitting. Such approach can be applied to each pixel 
without introducing a reference point; in fact, it is assumed that the mth –order polynomial describes non-defect evolutions, 
while  the nth –order polynomial includes both ‘classical’ signal behavior and deviations in defect areas. Since differential 
temporal evolutions involve some local extremums caused by hidden defects, they can be used for producing specific 
maxigrams and timegrams, thus making possible ‘no-reference’ tomography. 

Preliminary experimental results have been obtained (in collaboration with W.Świderski, WITU, Poland) on a 2 mm-
thick CFRP sample, same as in figures 1 and 2. The resulting tomogram of a deeper layer contained no artifacts which 
accompanied the DTT algorithm (see figure 3). 

 

A 

http://dx.doi.org/10.21611/qirt.2010.145



July 2-5, 2008, Krakow - Poland 

QIRT10
10th International Conference on Quantitative InfraRed Thermography

 

 
 

 
a) b) 

Fig. 3. Comparison between ‘classical’ and no-reference DTT algorithms  
in the inspection of a 2-mm thick CFRP sample: 

 
a - ‘classical’ DTT algorithm (multiple artifacts are present at different depths), 
b - no-reference DTT algorithm (two defects only at the depth of 0.75-1 mm are seen) 

4. Defect characterization 

The next approach to thermal tomography is based on the assumption that a relevant defect characterization 
algorithm may also finish with the discrimination of defects by their depth (along with defect lateral size and thickness), thus 
resulting in artificial images regarded as thermal tomograms.  

There are several data inversion algorithms available in TNDT. For example, the ThermoFit Pro software (Innovation 
Ltd., Russia) uses the generalized inversion formulas of whose outlook depends on whether maximum running contrasts 
appear within or after a heat pulse. Also, defect areas are supposed to be always warmer than the background. The only 
experimental parameters are maximum temperature contrasts and times of their appearance. Other input parameters are 
material thermal properties, heat pulse duration and thermal conductivity of expected defects. The formulas look as follows: 

 
                                                  [ ( )] (1 / ) ( / )B C D E F

m h d hP A L Fo Conα τ τ λ λ λ= − − .                         (1) 
 
Here: P  is a desired defect parameter (depth l  or thermal resistance dR ); α  is the thermal diffusivity; mτ  is the time when 

a maximum running contrast Con  appears; hτ  is the heat pulse duration;; dλ  is the thermal conductivity of an expected 

defect; λ  is the thermal conductivity of a material; L  is the sample thickness; 2/h hFo Lατ=  is the Fourier number 

related to the heat pulse duration hτ ; /Con T T= ∆ is the maximum running contrast in a defect area; , , , , ,A B C D E F  
are the coefficients determined by polynomial fitting of numerical results.  

Equation (1) was obtained in the assumption that defect lateral size significantly exceeds defect depth (one-
dimensional case). In the case of three-dimensional defects, there are some additional members introduced into equation (1). 
These members involve maximum and minimum defect dimensions determined by an operator directly on the corresponding 
image (the accuracy of such procedure has been found adequate for practical purposes, namely 5-15%).  In such way, heat 
diffusion around small-size defects can be taken into consideration. 

Since, an image of defect depth (‘depthgram’) is obtained by equation (1), a thermal tomogram can be derived by 
‘slicing’ this equation. The example of such approach is shown in figure 4. 

The stability of inversion formulas and a rather short computation time are the advantages of the described 
approach. 

5. Neural networks 

Neural networks as the simplest and straightforward step toward artificial intelligence have been considerably 
explored in NDT with the first works being traced to the 1990s [15]. The corresponding research at Tomsk Polytechnic 
University started recently to show that this technique can be effectively applied to both defect detection and characterization. 
In all cases, neural output images are more user-friendly than respective source images due to their binary-like nature. Since 
neural networks are able to characterize defect depths, they can also produce thermal tomograms. A preliminary result of this 
approach is shown in figure 5. A simple perceptron implemented on the MatLab platform was trained on sound areas of the 
sample, see the source image in figure 5a (same image in figure 4a). Then, the obtained binary image exhibited clearly five 
defects in a CFRP composite located at depths from 1.3 to 2.6 mm (figure 5b). 
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Fig. 4. Thermal tomogram of the 1.0-1.5 mm layer in a 5 mm-thick CFRP (right) obtained  

by applying 1D inversion formulas (an optimum source IR image on the left)  
 
 

  
a) b) 

Fig. 5. Using a neural network (perceptron) in TNDT  
of a 5 mm-thick CFRP sample (same as in figure 4): 

 
a – source IR image, 
b – binary map (5 Teflon inserts at depths 1.3 and 2.6 mm)  
 

 
 

6. Non-linear fitting 

Non-linear fitting is a well-known procedure which is based on the least-square minimization of differences between 
experimental data and a chosen process model. This technique is particularly good when there is a strong dependence 
between decision-making parameters, such as differential temperature signals, and parameters to be evaluated, e.g. defect 
depth. In this study, we have followed the approach proposed in [11]. It seems that a best model for TNDT can be supplied 
by a solution to the corresponding three-dimensional problem where defect are represented by parallelepipeds of unknown 
size and depth. However, as the first step to such complicated problem, we have used the known analytical solution to the 
heating of an adiabatic coating of the thickness l on a semi-infinite substrate: 

 
heating with a Dirac pulse by the energy W : 

 

                                                             */

1
( ) [1 2 ( ) ]F n

nc

WT e
e

τ ττ
πτ

∞
−

=
= + −Γ∑ ;  (2) 

Region of interest 
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heating with a square pulse by the power Q : 

 

                     
1 1

2( ) [ 2 ( ) 2 ( )]F n n
h h h

n nc

QT F F
e

τ τ τ τ τ τ τ τ τ τ
π

∞ ∞

= =
= − − + Γ − − Γ −∑ ∑ ;   (3) 

                                                               */ * *( ) ( )F e erfcτ τ πτ ττ
τ τ

−= − . 

 
step-wise heating: 

 

                                        */

1

2 * *( ) [1 2 ( ) { ( )}F n

c n

QT e erfc
e

τ ττ πτ ττ
π τ τ

∞
−

=
= + −Γ ⋅ −∑ .  (4) 

 . 

Here 2 2* / cn lτ α=  is the specific heat transit time, ce is the coating effusivity,  ( ) /( )s c s ce e e eΓ = − +  is the reflection 
coefficient; the subscripts “c” and “s” are related to the coating and the substrate respectively, 

 The presentation of defects in such model is clear from figure 6; for instance, the defect depth is represented by the 
coating thickness l , while the defect thickness d  is evaluated through the reflection coefficient at the coating-substrate 
boundary.  

 
Fig. 6. Heat conduction model of hidden defects (non-linear fitting algorithm) 

 
 

The following model parameters have been identified by using the model above: 1) heating efficiency / cW e ; 2) 

coating thickness  2/c lα ; 3) reflection coefficient Γ ; 4) temporal offset offτ∆  (as the additional parameter which accounts 

for possible temporal de-synchronization of experimental and theoretical data); 5) amplitude offset reflT∆  (as the additional 

parameter which accounts for possible presence of spurious reflected radiation).  
At this research stage, the non-linear fitting algorithm has been verified on the artificial IR image sequence 

calculated with the ThermoCalc-6L software. The sequence consisted of 250 images and reflected TNDT of a 2 mm-thick 
CFRP sample which contained 10x10 mm defects at depths from 0.2 to 1.0 mm (modeling the sample in figure 1). The test 
problem parameters are shown in figure 7 along with a ‘quasi-optimal’ image (taken at 3.7 s after flash heating). The 
acquisition frequency was 50 Hz. The corresponding temperature signal evolutions shown in figure 8 are fully ‘classical’ to 
reveal maximum differential signals mT∆  and times of their appearance mτ .  

Air 

Air 

Coating 

Defect depth l 

W, Q W, Q 

Front Front 
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Fig. 7. Modeling air-filled defects in CFRP 

 

 
 

Fig. 8. Evolution of differential temperature signals in the model from figure 7   
 

Nonlinear fitting has been applied to the temperature profiles in figure 8. It has been found that the accuracy of fitting 
mainly depends on a fitting time interval. The best interval seemed to be from the start, i.e. zero, point to the mτ  time, as 
shown in figure 8. The fitting results by ‘defect depth’ for 5 defects of 9 total are shown in table 2 to prove reasonable 
accuracy of defect depth evaluation. It is worth noticing that the efficiency of identifying the reflection coefficient, i.e. the 
defect thickness, has been much worse that can be explained either by low sensitivity to defect thickness or by inadequacy of 
the accepted model, or both. 

The algorithm described is very time-consuming. The analysis of one pixel requires from several hundreds to several 
thousands of iterations, thus occupying up to 15 s of processor time (on a ‘normal’ laptop computer). Therefore, the analysis 
of a 320x240 frame would require up to 13 days (!).  

 
Table 2. The accuracy of the evaluation of defect depth by using the non-linear fitting algorithm (data in figure 8) 

Defect Evaluated value l , mm Accuracy, % 
l=0.2 mm; d=0.1 mm 0.182 9.8 

l=0.6 mm; d=0.05 mm 0.51 17.6 
l=0.6 mm; d=0.1 mm 0.52 14.7 
l=0.6 mm; d=0.2 mm 0.54 11.6 
l=1.0 mm; d=0.1 mm 0.91 10.3 

 

l=0.2 mm 
d=0.05 mm 

0.2 mm 
0.1 mm 

0.2 mm 
0.2 mm 

0.6 mm 
0.05 mm 

0.6 mm 
0.1 mm 

0.6 mm 
0.2 mm 

1.0 mm 
0.05 mm 

1.0 mm 
0.1 mm 

1.0 mm 
0.2 mm 

10x10 mm 

The observation time of 3.7 s  
is ‘quasi-optimal’ for all 9 defects 

Heating parameters: 
Q=106 W/m2 

τh=0,01 s 
W=104 J/m2 
 

CFRP (2 mm): 
 

λ=0,61 W/(m.K) 
α=0,231 m2/s 
е=1268 W.s1/2/(m2.K) 
ρ=1500 kg/m3 
С=1758 J/(kg.K) 
 

Optimal fitting period 
∆T, oC 

Time τ, x 0.02 s 
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7. Conclusions 

• Unlike the ‘classical’ dynamic thermal tomography, the no-reference tomography is free of choosing a reference 
point because it is based on the a priori assumption about the ‘non-defect’ behavior of a sample under test.  Non-
defect areas are described by low-order polynomial functions while hidden defects cause the appearance of 
significant higher-order members. This algorithm has been applied to a CFRP sample. The corresponding 
tomograms contained less artifacts than those obtained ‘classically’ but the algorithm is cumbersome and requires 
further analysis.  

• The use of a neural network of a simple architecture has produced promising results, at least, if one deals with the 
enhancement of defect visibility. The synthesis of thermal tomograms requires the use of a network with many 
outputs that is the goal of further research.  

• The known algorithm of non-linear fitting has been applied to a CFRP composite on the base of a simple coating-on-
substrate model to evaluate 5 model parameters, including defect depth and thickness. The accuracy of the 
determination of defect depth has been about 18%, thus principally allowing the synthesis of thermal tomograms. 
However, this approach cannot be applied to full-frame images because of extremely long computation time.  

 
This research was supported by the grant No. 09-08-13568 from Russian Foundation for Basic Research. 
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